Product Code Database
Example Keywords: ocarina of -underpants $91-167
   » » Wiki: Spherical Basis
Tag Wiki 'Spherical Basis'.
Tag

In and applied mathematics, particularly quantum mechanics and computer graphics and their applications, a spherical basis is the basis used to express . The spherical basis closely relates to the description of in quantum mechanics and spherical harmonic functions.

While spherical polar coordinates are one orthogonal coordinate system for expressing vectors and tensors using polar and azimuthal angles and radial distance, the spherical basis are constructed from the and use .


In three dimensions
A vector A in 3D can be expressed in the familiar Cartesian coordinate system in the e x, e y, e z, and coordinates Ax, Ay, Az:

or any other coordinate system with associated basis set of vectors. From this extend the scalars to allow multiplication by complex numbers, so that we are now working in \mathbb{C}^3 rather than \mathbb{R}^3.


Basis definition
In the spherical bases denoted e+, e, e0, and associated coordinates with respect to this basis, denoted A+, A, A0, the vector A is:

where the spherical basis vectors can be defined in terms of the Cartesian basis using -valued coefficients in the xy plane:

(2025). 9783527617838, John Wiley & Sons. .

\mathbf{e}_x -\frac{i}{\sqrt{2}}\mathbf{e}_y \\
     
\mathbf{e}_{-} & = +\frac{1}{\sqrt{2}}\mathbf{e}_x - \frac{i}{\sqrt{2}}\mathbf{e}_y \\

in which i denotes the , and one normal to the plane in the z direction:

\mathbf{e}_0 = \mathbf{e}_z

The inverse relations are:

\mathbf{e}_+ + \frac{1}{\sqrt{2}}\mathbf{e_{-}} \\
     
\mathbf{e}_y & = + \frac{i}{\sqrt{2}} \mathbf{e}_+ + \frac{i}{\sqrt{2}}\mathbf{e_{-}} \\ \mathbf{e}_z & = \mathbf{e}_0


Commutator definition
While giving a basis in a 3-dimensional space is a valid definition for a spherical tensor, it only covers the case for when the rank k is 1. For higher ranks, one may use either the commutator, or rotation definition of a spherical tensor. The commutator definition is given below, any operator T_q^{(k)} that satisfies the following relations is a spherical tensor: J_\pm, = \hbar \sqrt{(k\mp q)(k\pm q+1)}T_{q\pm 1}^{(k)} J_z, = \hbar q T_q^{(k)}


Rotation definition
Analogously to how the spherical harmonics transform under a rotation, a general spherical tensor transforms as follows, when the states transform under the \mathcal{D}(R), where is a (3×3 rotation) group element in SO(3). That is, these matrices represent the rotation group elements. With the help of its , one can show these two definitions are equivalent.
\mathcal{D}(R)T_q^{(k)}\mathcal{D}^{\dagger}(R) = \sum_{q' = -k}^k T_{q'}^{(k)} \mathcal{D}_{q' q}^{(k)}


Coordinate vectors
For the spherical basis, the coordinates are complex-valued numbers A+, A0, A, and can be found by substitution of () into (), or directly calculated from the inner product , ():

+ \frac{iA_y}{\sqrt{2}} \\
     
A_{-} & = \left\langle \mathbf{A}, \mathbf{e}_- \right\rangle = +\frac{A_x}{\sqrt{2}} + \frac{iA_y}{\sqrt{2}} \\

A_0 = \left\langle \mathbf{e}_0, \mathbf{A} \right\rangle = \left\langle \mathbf{e}_z, \mathbf{A} \right\rangle = A_z

with inverse relations:

A_+ + \frac{1}{\sqrt{2}} A_{-} \\
     
A_y & = - \frac{i}{\sqrt{2}} A_+ - \frac{i}{\sqrt{2}} A_{-} \\ A_z & = A_0

In general, for two vectors with complex coefficients in the same real-valued orthonormal basis e i, with the property e i· e j = δij, the inner product is:

where · is the usual and the complex conjugate * must be used to keep the magnitude (or "norm") of the vector positive definite.


Properties (three dimensions)

Orthonormality
The spherical basis is an orthonormal basis, since the inner product , () of every pair vanishes meaning the basis vectors are all mutually :

\left\langle \mathbf{e}_+ , \mathbf{e}_{-} \right\rangle = \left\langle \mathbf{e}_{-} , \mathbf{e}_0 \right\rangle = \left\langle \mathbf{e}_0 , \mathbf{e}_+ \right\rangle = 0

and each basis vector is a :

\left\langle\mathbf{e}_+ , \mathbf{e}_{+} \right\rangle = \left\langle\mathbf{e}_{-} , \mathbf{e}_{-} \right\rangle = \left\langle\mathbf{e}_0 , \mathbf{e}_0 \right\rangle = 1

hence the need for the normalizing factors of 1/\!\sqrt{2}.


Change of basis matrix
The defining relations () can be summarized by a transformation matrix U:

\begin{pmatrix}
\mathbf{e}_+ \\ \mathbf{e}_{-} \\ \mathbf{e}_0 \end{pmatrix} = \mathbf{U}\begin{pmatrix} \mathbf{e}_x \\ \mathbf{e}_y \\ \mathbf{e}_z \end{pmatrix} \,,\quad \mathbf{U} = \begin{pmatrix} - \frac{1}{\sqrt{2}} & - \frac{i}{\sqrt{2}} & 0 \\ + \frac{1}{\sqrt{2}} & - \frac{i}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}\,,

with inverse:

\begin{pmatrix}
\mathbf{e}_x \\ \mathbf{e}_y \\ \mathbf{e}_z \end{pmatrix} = \mathbf{U}^{-1}\begin{pmatrix} \mathbf{e}_+ \\ \mathbf{e}_{-} \\ \mathbf{e}_0 \end{pmatrix} \,,\quad \mathbf{U}^{-1} = \begin{pmatrix} - \frac{1}{\sqrt{2}} & + \frac{1}{\sqrt{2}} & 0 \\ + \frac{i}{\sqrt{2}} & + \frac{i}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}\,.

It can be seen that U is a , in other words its Hermitian conjugate U (complex conjugate and ) is also the U−1.

For the coordinates:

\begin{pmatrix}
A_+ \\ A_{-} \\ A_0 \end{pmatrix} =\mathbf{U}^\mathrm{*} \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} \,,\quad \mathbf{U}^\mathrm{*} = \begin{pmatrix} - \frac{1}{\sqrt{2}} & + \frac{i}{\sqrt{2}} & 0 \\ + \frac{1}{\sqrt{2}} & + \frac{i}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}\,,

and inverse:

\begin{pmatrix}
A_x \\ A_y \\ A_z \end{pmatrix} = (\mathbf{U}^\mathrm{*})^{-1} \begin{pmatrix} A_+ \\ A_{-} \\ A_0 \end{pmatrix} \,,\quad (\mathbf{U}^\mathrm{*})^{-1} = \begin{pmatrix} - \frac{1}{\sqrt{2}} & + \frac{1}{\sqrt{2}} & 0 \\ - \frac{i}{\sqrt{2}} & - \frac{i}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}\,.


Cross products
Taking of the spherical basis vectors, we find an obvious relation:

\mathbf{e}_{q}\times\mathbf{e}_{q} = \boldsymbol{0}

where q is a placeholder for +, −, 0, and two less obvious relations:

\mathbf{e}_{\pm}\times\mathbf{e}_{\mp} = \pm i \mathbf{e}_0
\mathbf{e}_{\pm}\times\mathbf{e}_{0} = \pm i \mathbf{e}_{\pm}


Inner product in the spherical basis
The inner product between two vectors A and B in the spherical basis follows from the above definition of the inner product:

\left\langle \mathbf{A} , \mathbf{B} \right\rangle = A_+ B_+^\star + A_{-}B_{-}^\star + A_0 B_0^\star


See also
  • Wigner–Eckart theorem
  • Wigner D matrix
  • 3D rotation group


General


External links
Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs